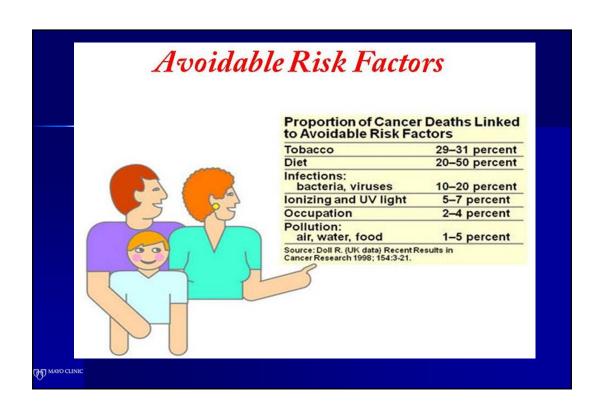
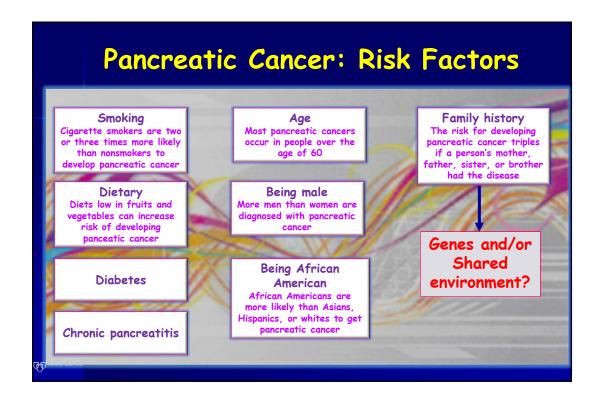
Genetics of Pancreatic Cancer

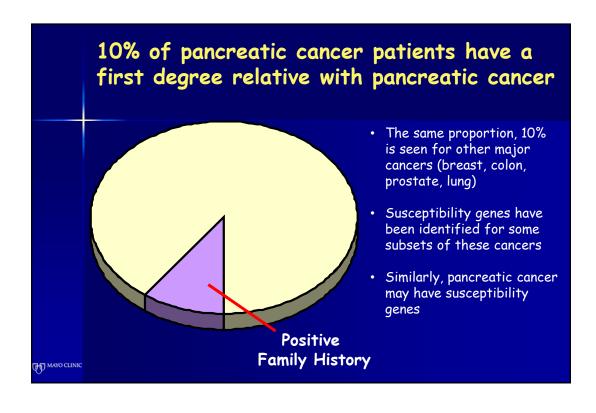
Gloria M. Petersen, Ph.D.

Mayo Clinic

Rochester, Minnesota


MAYO CLINIC


Pancreatic Cancer Action Network - Bloomington, MN


Topics

- Is family history a risk factor for pancreatic cancer?
- Why we study families with pancreatic cancer
- New discoveries in genetics of pancreatic cancer: What does it all mean?

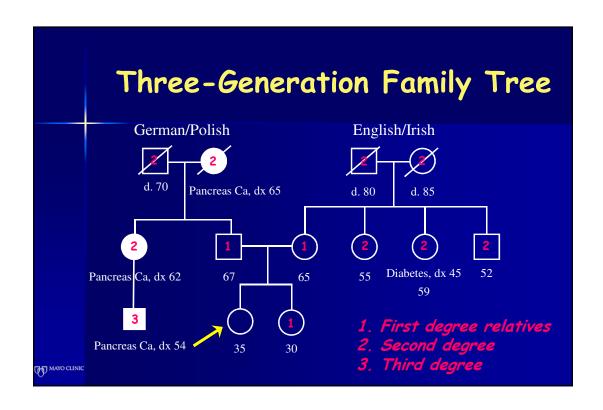
₹ MAYO CLINI

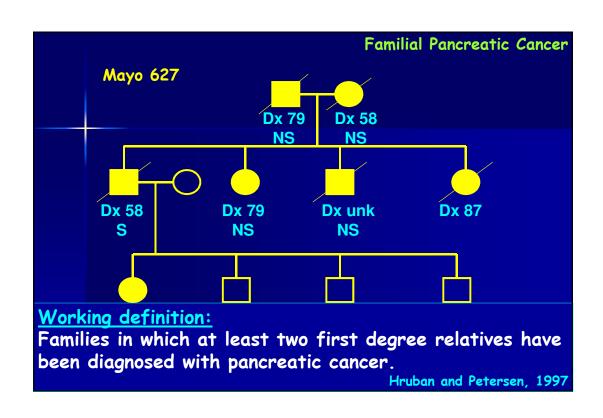
Genetics and Your Family History

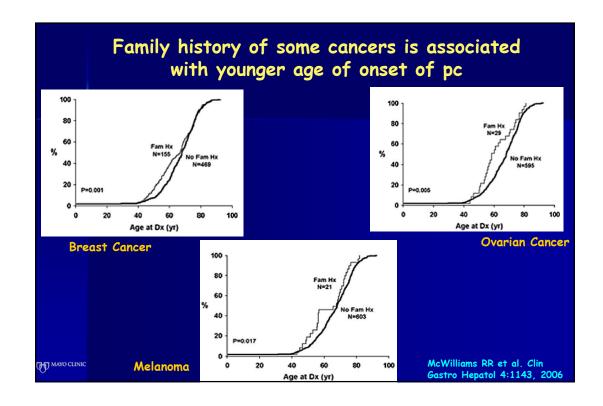
- Is family history a risk factor for pancreatic cancer?
- Why we study families with pancreatic cancer
- New discoveries in genetics of pancreatic cancer: What does it all mean?

AFT MAYO CLINIC

In the clinic, knowing about your family history is one way to:




- Identify who is at risk
- Refer for genetic risk counseling and possibly genetic testing
- Recommend who needs checkups more often



Family-based Research

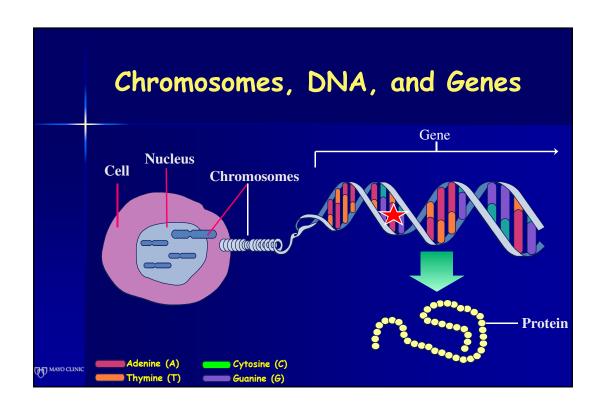
- Patient provides family history information: at least three generations is helpful
- Family members can be invited into the study
- Even deceased relatives are important!
- DNA from blood, combined with the family history structure, helps to "connect the dots"

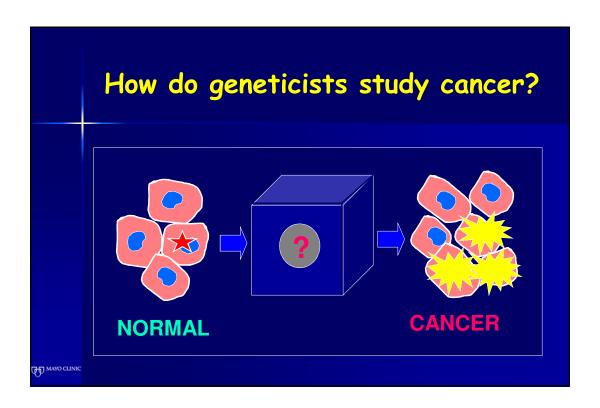
	Hereditary Disorders and Genes Associated with Pancreas Cancer				
	<u>Disorder</u>	Gene			
	Hereditary Pancreatitis	PRSS1 (Cationic trypsinogen)			
	Familial Atypical Multiple Mole Melanoma Syndrome (FAMMM)	P16 (CDKN2A)			
	BRCA2	BRCA2			
	Hereditary Colorectal Cancers	APC, MSH2, MLH1			
	Peutz-Jeghers Syndrome	STK11/LKB1			
	Fanconi Anemia genes	FANCC, FANCG			
MAYO CLINIC					

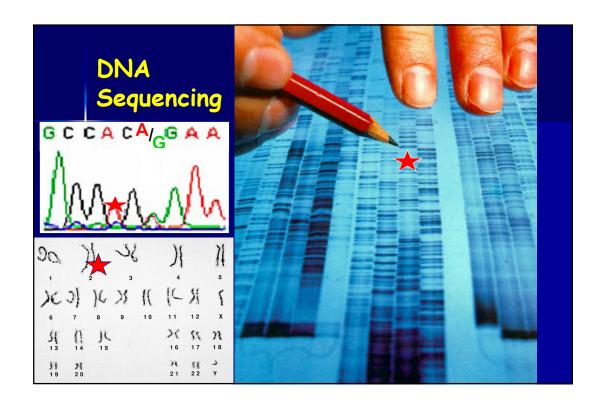
TABLE 1	Inherited ca	ancer predispositi	on syndromes that
increase	the risk for	pancreatic cancer	

RR, 2.26–3.0 RR, 3.5–5.9 RR, 7.4–47.8 SIR, 57 SIR, 0–8.6	Malignancies: breast (particularly premenopausal), ovary, male breast, prostate Malignancies: breast (particularly premenopausal), ovary, male breast, prostate, melanoma (cutaneous and ocular) Malignancies: melanoma (often multiple and early onset) Other: dysplastic nevi Other: chronic pancreatitis Malignancies: colorectum, endometrium,
RR, 7.4–47.8 SIR, 57	premenopausal), ovary, male breast, prostate, melanoma (cutaneous and ocular) Malignancies: melanoma (often multiple and early onset) Other: dysplastic nevi Other: chronic pancreatitis
SIR, 57	(often multiple and early onset) Other: dysplastic nevi Other: chronic pancreatitis
SIR, 0–8.6	Malignancies: colorectum, endometrium
Control Control Control (1985)	
	ovary, stomach, small bowel, urinary tract
	(ureter, renal pelvis), biliary, brain (glioblastoma), skin (sebaceous)
	(grootastoria), skiii (sootaootas)
SIR, 132	Malignancies: colorectum, small bowel, stomach, breast, gynecological Other: melanin pigmentation (mucocutaneous) small-bowel intussusception
	SIR, 132

ரு MAYO CLINIC Axilbund, J, Wiley E. Genetic Testing by Cancer Site: Pancreas. Cancer Journal. 18(4):350-354, 2012.


Genetics and Your Family History

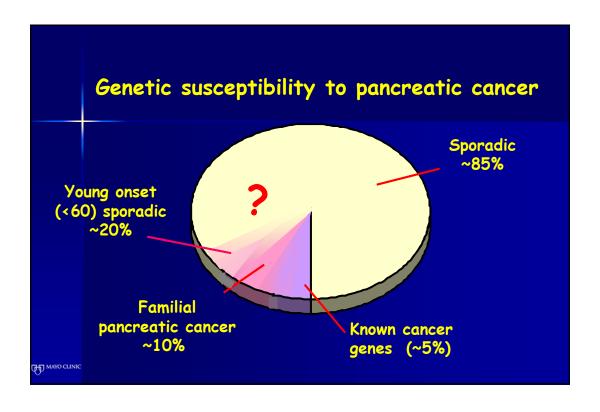

- Is family history a risk factor for pancreatic cancer?
- Why we study families with pancreatic cancer
- New discoveries in genetics of pancreatic cancer: What does it all mean?


AFT MAYO CLINIC

Is There A Genetic Connection Between Melanoma and Pancreatic Cancer?

· Methods:

- 1,537 pancreatic adenocarcinoma patients
- · Mutation analysis of CDKN2A gene

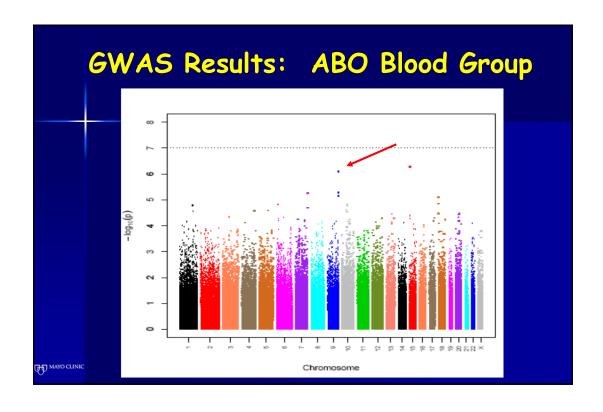

· Results:

- · 9 (0.6%) carried germline mutations in CDKN2A
- · Carriers were more likely to have:
 - Family history of pancreatic cancer (p= 0.003); carrier rate 3.3%
 - Family history of melanoma (p= 0.03); carrier rate 5.3%
 - Personal history of melanoma (p= 0.01)

MAYO CLINIC

McWilliams RR et al. Eur J Hum Genetics, 2011 Apr;19(4):472-8.

Pt	Sex/ Age*	Family history of pancreatic cancer	Family history of melanoma	Personal history of melanoma	Exon	Protein	Genetic change	Protein change	Function
1	F 61	Yes	No	No	1A	p16	-34G>T	N/A	Initiation codon
2	M 74	No	Yes	Yes	1A	p16	47T>G	L16>R	AAC p16
3	F 65	No	No	No	1A	p16	71G>C	R24>P	AAC p16
4	F 58	No	No	No	2	p16 p14	192G>C 358G>C	L64>L A120>P	AAC p14ARF
5	M 66	No	No	No	2	p16 p14	238-251 del 404-417 del	R80fs P135fs	makes a hybrid p16/p14 protein after frameshift
6	M 65	Yes	No	No	2	p16 p14	283 del 449 del	V95fs G150fs	frameshift
7	M 45	No	No	No	2	p16 p14	318G>A 484G>A	V106>V A162>T	AAC p14ARF
8	M 67	No	Yes	Yes	2	p16	457G>T	D153spl	Affects splicing in p16/p14ARF
9	M 57	Yes	No	No	2	p16	457G>T	D153spl	Affects splicing in p16/p14ARF


PanScan - a GWAS

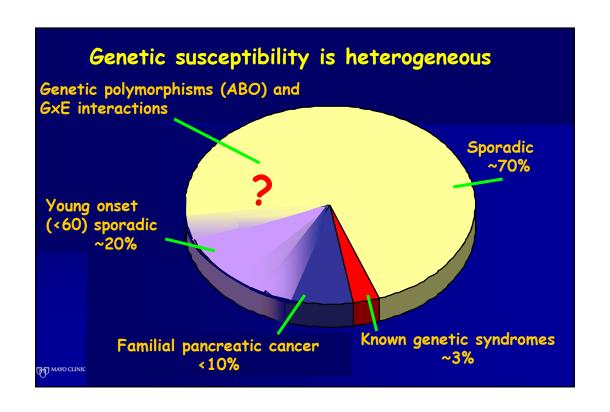
■ PanScan 1

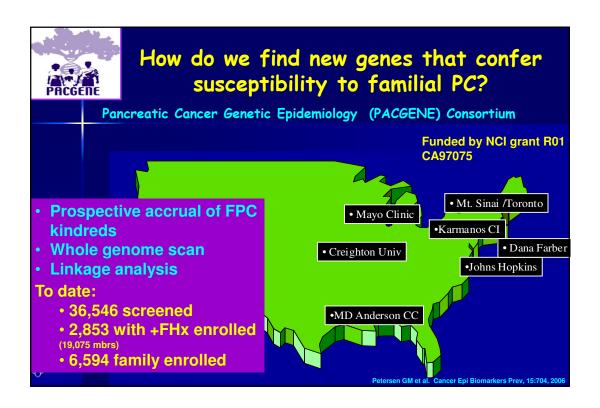
- Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics 41:986-90, September, 2009.
- 2000 pairs

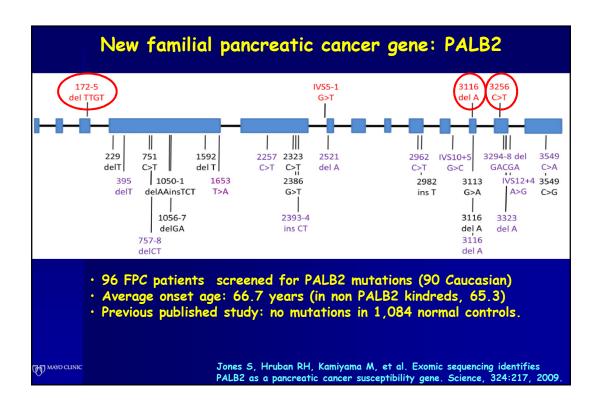
■ PanScan 2

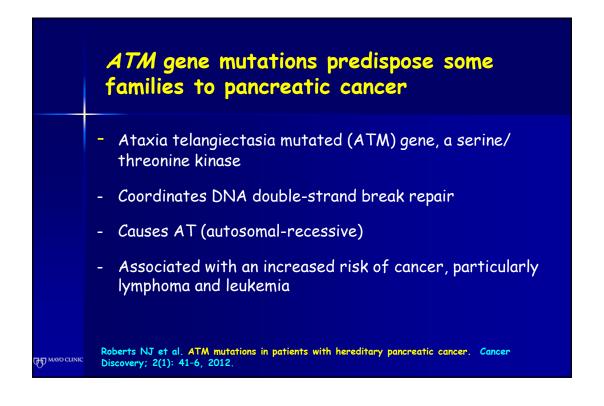
- Petersen GM, Amundadottir A, Fuchs CS, et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, Feb 2010.
- 3,850 pairs

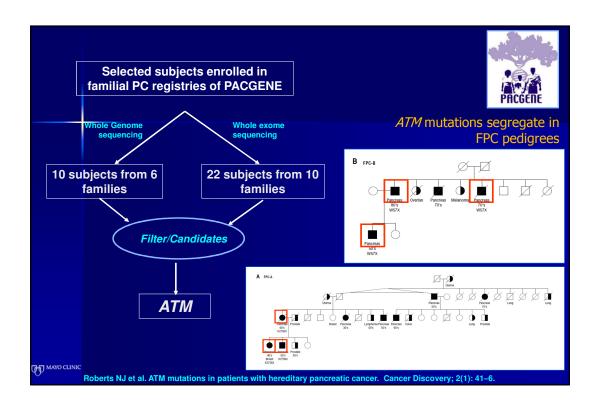
ABO Blood Groups and Cancer

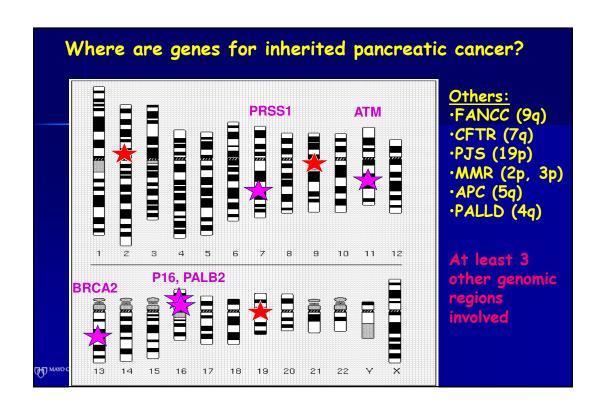

- Gastric Cancer well established
 - Increased risk for blood group A
- Pancreatic Cancer -Possibly risk with ABO

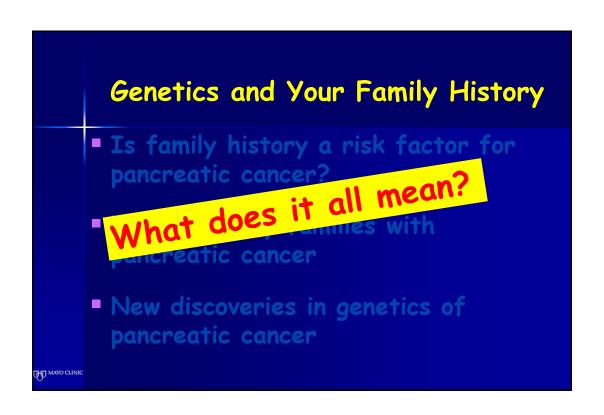

Disease	ABO allele	↑ Risk	χ^2
Duodenal ulcer	0	1.40	200
Stomach cancer	Α	1.25	49
Stomach ulcer	0	1.82	37
Pernicious anemia	Α	1.50	17
Pancreas cancer	А	1.27	8

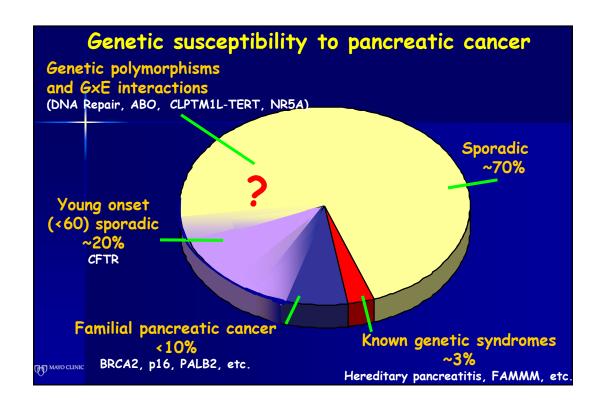

Bodmer and Bonilla Nat Gen 2008


Summary of GWAS Main Findings


- Chromosome 13q22.1 2 SNPs: rs9543325 (P=3.27x10-11; per allele odds ratio, OR 1.26, 95% Cl=1.18-1.35) and rs9564966 (P=5.86x10-8; per allele OR 1.21, 95% Cl=1.13-1.30) map to a non-genic region
- Chromosome 1q32.1 5 SNPs map to NR5A2 [Nuclear receptor subfamily 5, group A, member 2]; the strongest signal was rs3790844 (P=2.45x10-10; per allele OR 0.77, 95% Cl=0.71-0.84).
- Chromosome 5p15.33 1 SNP maps to CLPTM1L-TERT;
 rs401681 (P=3.66x10-7; per allele OR 1.19, 95% Cl=1.11-1.27)
 ; gene is associated with multiple cancers.







Variant	Pancreatic cancer type	Nucleotide (genomic) ^a	Nucleotide (cDNA) ^b	Amino acid (protein) ^c	Туре	Number of affected individuals sequenced
1	Familial ^d	g.chr11:107711896A>T	c.8266A>T	p.K2756X	Nonsense	3
2	Familial ^e	g.chr11:107603810G>A	c.170G>A	p.W57X	Nonsense	3
3	Familial	g.chr11:107648719G>T	c.3214G>T	p.E1072X	Nonsense	1
4	Familial	g.chr11:107691848G>A	c.6095G>A	p.R2032K	Missense	1
5	Familial	g.chr11:107693309G>T	IVS41-1G>T	sp	Splice site	1
6	Familial	g.chr11:107660218delG	c.3801delG	fs	INDEL	1
	For pro	2.4%) carried . P=0.046 bbands <u>></u> 3 in fa ntributes to tl tic cancer	mily: 4.6	%		

Inherited Susceptility to	Pancreatic Cancer: Updated					
Genes	Risk of pancreatic cancer					
BRCA2	OR = 3.5 (95% CI = 1.87–6.58)					
STK11	SIR = 132 (95% CI = 44–261)					
PALB2	Increased					
PRSS1 and SPINK1	SIR = 67 (95% CI = 8–80)					
ATM	Increased					
CDKN2A	SIR=13-38					
Unknown*	SIR = 6-32					
Mismatch repair genes (MLH1, MSH2, MHS6 and PMS2)	No effect up to $SIR = 8.6$ (95% $CI = 4.7-15.7$)					
BRCA1	No effect up to OR= 2.26 (95% CI = $1.26-4.06$)					
CI, confidence interval; OR, odds ratio; SIR, standardized incidence ratio. *Kindred with familial pancreatic cancer but without mutations in an established pancreatic cancer gene.						
Klein AP. Identifying ped	ople at a high risk of developing pancreatic cancer. Nat Rev Cancer. 2013 Jan;13(1):66-74.					

Frequencies of BRCA1, BRCA2, CDKN2A, and PALB2 Germline Mutations in Familial Pancreatic Cancer (FPC): A PACGENE Study. Zhen DB, Rabe KG, Gallinger S, Syngal S, Schwartz AG, Goggins MG, Hruban RH, Cote ML, Moyes K*, Wenstrup RJ*, Hartman A-R*, Seminara D, Klein AP, Petersen GM. (*Myriad Genetics). American Society of Human Genetics Annual Meeting Poster 3433T, October 2013.

- Five PACGENE sites contributed germline DNA samples from 518 unrelated cases affected with pancreatic adenocarcinoma.
- Tested individuals were affected with pancreatic cancer (PC) and all came from kindreds with 2+ PC
- 160 individuals were from kindreds that met criteria for FPC; the remainder were Non-FPC.
- Testing performed on BRCA1, BRCA2 (including analysis of deletions and arrangements), CDKN2A, and PALB2.
- Mutation frequencies in subset of patients who had had all 4 genes tested

MAYO CLINIC

Pancreatic Cancer Cases Tested for All Four Genes

Gene	D/S	5 (%)	VUS (%)		
	FPC (N=154)	Non-FPC (N=336)	FPC (N=154)	Non-FPC (N=336)	
BRCA1	2.0	0.6	0	0	
BRCA2	3.3	3.0	0	0.9	
CDKN2A	2.6	0.9	5.2	1.2	
PALB2	0.7	0.3	0	2.1	
Total (probability of a mutation in any of the four genes)	7.8	4.8	5.2	4.2	

FPC : Familial Pancreatic Cancer (2+ affected first degree relatives in kindred)

Non-FPC: Two affected blood relatives in kindred, not first degree

Lucas AL et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer, April 2014 epub ahead of print.

- High risk genetics/prevention setting for PC
- N=37 high risk unaffected individuals
- 7 (18.9%) positive
- N=32 patients affected with PC
- 7 (21.9%) positive
- High proportion of Ashkenazi Jewish (AJ) population; recommended that BRCA1/2 testing should be considered in AJ PC patients even with no family history of breast or ovarian cancer

MAYO CLINIC

Lucas AL et al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts. Cancer, April 2014 epub ahead of print.

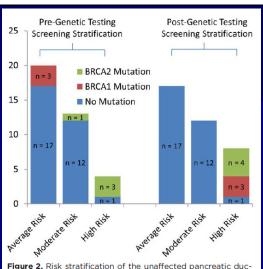


Figure 2. Risk stratification of the unaffected pancreatic ductal adenocarcinoma screening cohort who underwent genetic testing at the study institution is shown. Risk stratification before genetic testing identified 20 patients at average risk, 3 patients at moderate risk, and 4 patients at high risk. Of the 4 high-risk patients, 3 (75%) were BRCA2 carriers. One moderate-risk patient was found to carry a BRCA2 mutation. A total of 3 of 20 average-risk patients (15%) were found to have BRCA1 mutations. All BRCA1/2 mutation carriers were reclassified into a high-risk screening protocol.

Conclusions

- Research has shown that there are individuals at increased risk for developing pancreatic cancer
- Genetic susceptibility is heterogeneous
- Limited genetic testing is available
- Our work continues to better understand the genetics and to help patients

MAYO CLINIC

Collaborators & Acknowledgments

Mayo Clinic

- · Rob McWilliams, MD
- Kari Rabe, M.S.
- · Bill Bamlet, M.S.
- · Suresh Chari, M.D.
- · Wilma Lingle, Ph.D.
- · Fergus Couch, Ph.D.
- · Ed Highsmith, M.D.
- · Julie Cunningham, Ph.D.
- · Thomas Smyrk, M.D.
- Lizhi Zhang, M.D.
- · Hugues Sicotte, Ph.D.
- · Carmen Radecki-Breitkopf, Ph.D.
- · Ryan Wuertz, Bridget Eversman, Sarah Amundson, Catie Erding
- R01 CA97075, CA154517, CA154823
- SPORE (P50 CA 102701)
- Pancreatic Cancer Action Network

Johns Hopkins University

- Ralph Hruban, M.D.
 Mike Goggins, M.D.
 Alison Klein, Ph.D.

- · Mimi Canto, M.D.

PACGENE collaborators

- · Melissa Bondy, Ph.D. MDA
- · Steve Gallinger, M.D. U Toronto
- · Ann Schwartz, Ph.D. Wayne SU
- · Sapna Syngal, M.D. DFCI
- · Kevin Brown, Ph.D. TGEN
- · Daniela Seminara, Ph.D. NCI
- · Henry Lynch, M.D. Creighton U
- · Ctr for Inherited Disease Research
- · David Hogg, Ph.D.

PanScan Collaborators - NCI

- · Patricia Hartge, Ph.D.
- · Robert Hoover, Ph.D.
- · Stephen Chanock, Ph.D.
- · Laufey Amundadottir, Ph.D.