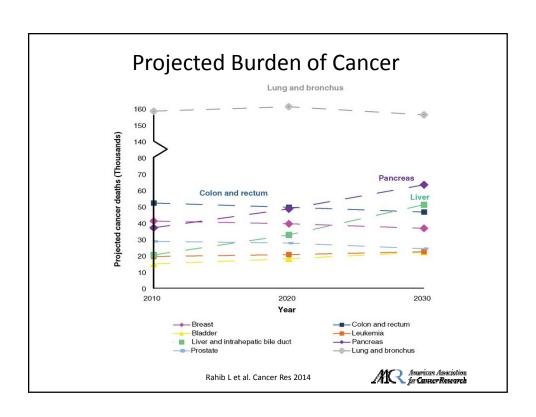


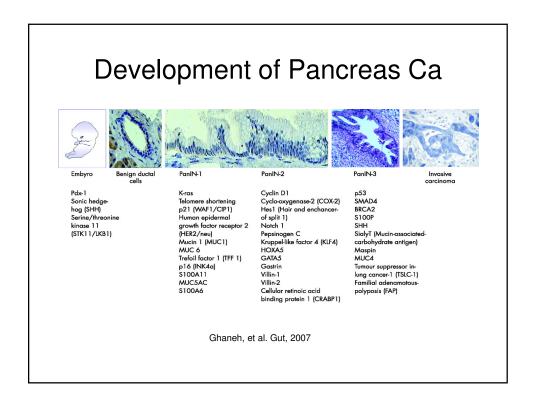
Pancreatic Adenocarcinoma: Current Treatment Approaches

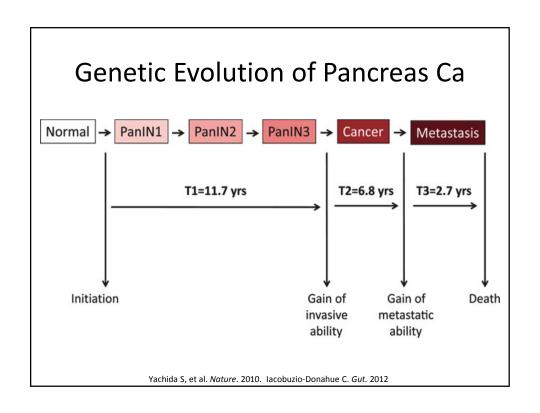
Pancreatic Cancer Action Network Seminar New York, Oct 24th, 2014

Eileen M. O'Reilly, M.D.

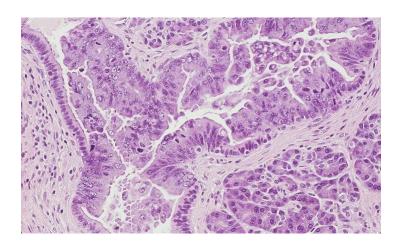
Associate Director, Clinical Research Rubenstein Center for Pancreatic Cancer Research Memorial Sloan Kettering Cancer Center


Agenda


- Pancreas cancer epidemiology
- Early stage disease
- · Advanced disease
- Clinical trials
- Novel agents in development


The Problem and Challenges

- New diagnoses US 2014: 45,220
- 9th-10th most common cancer
- 3% of all new cancers
- Overall 5-year survival low and stable


American Cancer Society, 2014. www.cancer.org; SEER Cancer Statistics Review, 1975-2006. NCI. www.surveillance.cancer.gov; Hoos WA. J Clin Oncol, 2013; Siegel R. Ca Cancer J Clin, 2014

Pancreatic Ductal Adenocarcinoma

A Formidable Tumor Biology...

- Complex microenvironment
- Physical barrier to effective drug delivery (stroma)
- Relative immune suppression
- Multiple gene mutations
- Key genes can't be targeted

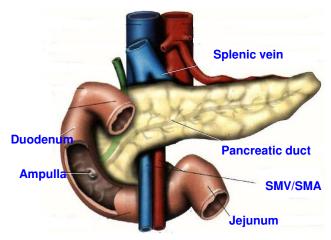
Localized Pancreas Cancer

3 Key groups:

- Localized, operable (stage I-IIB)
- -Localized, 'borderline' operable
- -Locally advanced, non-operable (stage III)

Clinical Features & Presentation

- Common symptoms: weight loss, appetite loss, jaundice, pain, malabsorption, new diabetes
- Symptoms depend on primary tumor location
 - Head tumors: weight loss, jaundice
 - Body/ tail tumors: weight loss, back/flank pain
- Blood clots: DVT or PE, presenting symptom in advanced disease (Trousseau)

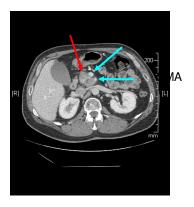

Surgical Considerations

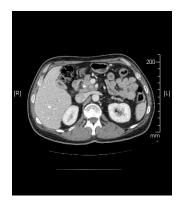
- Absence of spread of cancer
- Key issue is the relationship of primary tumor to blood vessels
 - CT pancreas angiography most useful
- Confirmed diagnosis of malignancy not necessitated in right clinical setting
- Laporoscopy used selectively

Operable Pancreas Cancer

Surgery for Pancreas Adenoca

Pancreaticoduodenectomy (Whipple) 80% Distal Pancreatectomy +/- Splenectomy 20%


Adjuvant (Postoperative) Therapy

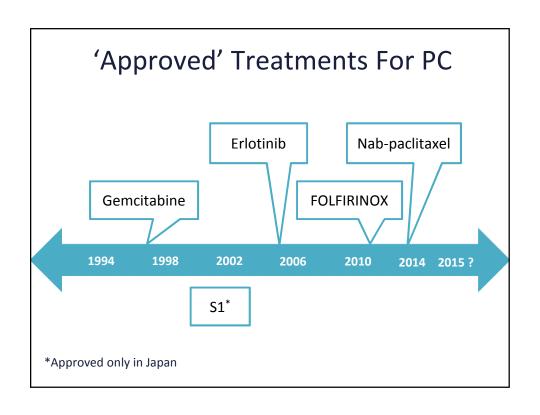

- Gemcitabine or 5-fluorouracil (5-FU) for 6 months
- Data for inclusion of combined chemotherapy and radiation – more controversial
 - US often included
 - Europe, Japan typically chemotherapy alone
 - Large study underway to define absolute benefit of chemotherapy + radiation (RTOG 0848)
- Other trials evaluating adding agent to gemcitabine

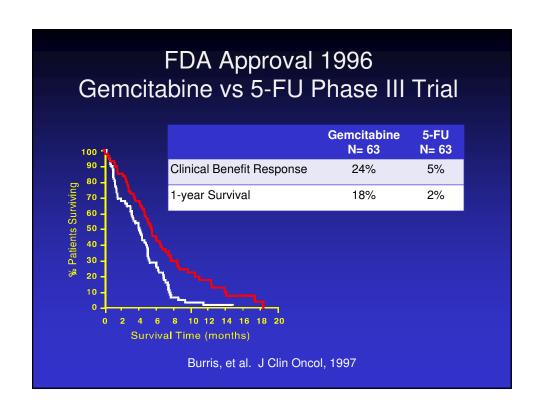
Why Neoadjuvant (Pre-operative) Therapy?

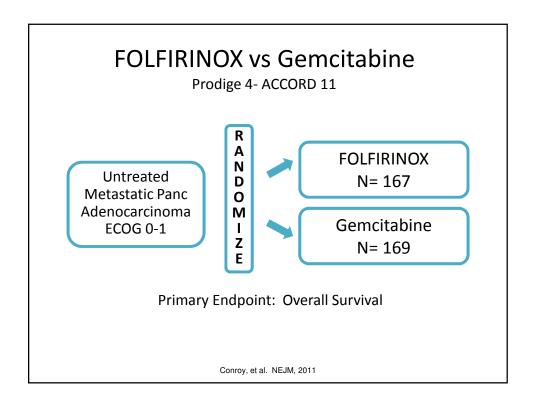
- Risk of recurrence
- Selects out cancer behaviour, avoidance of surgery
- Improved treatment delivery: 20-25% don't receive adjuvant therapy in view of post-op issues
- Improved margin negative operations, reduced local recurrence rate, 'downstaging'?
- Standard approach in other GI cancers

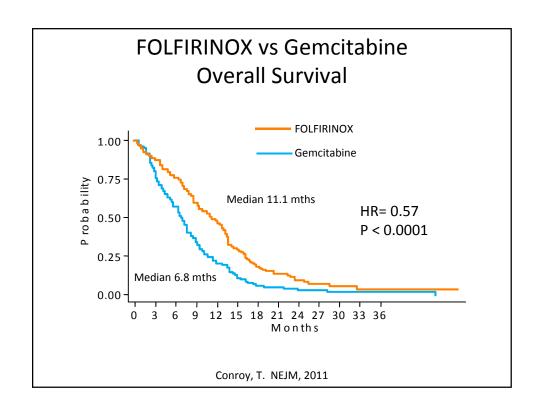
CT Pancreas Scan: Borderline Resectable Hypovascular pancreas head tumor

Inoperable Pancreas Cancer


Head of Pancreas & Liver Metastases

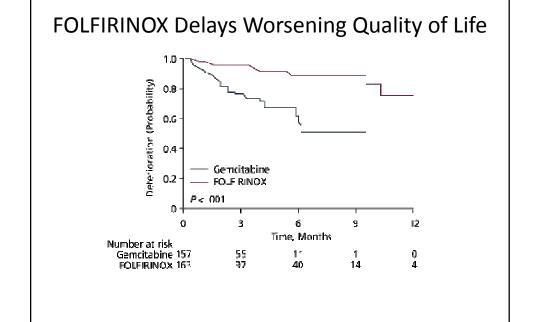

Multidisciplinary Management

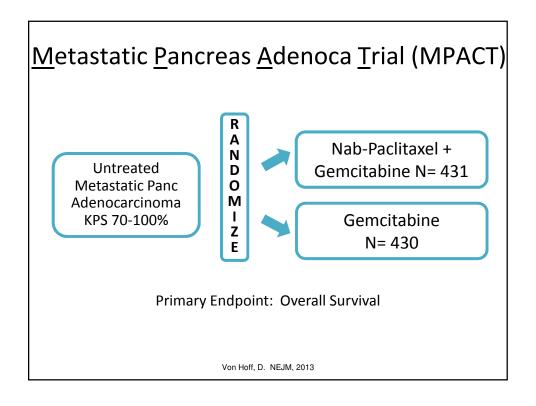

- Pain management
 - Narcotics, nerve block
 - Supportive/ palliative care
- Jaundice
 - ERCP + bile duct stent, operative bypass
- Duodenal (gastric outlet) blockage
 - Stent, drainage tube (dPEG), rarely surgery
- Nutrition
 - Enzyme supplementation, appetite enhancement
- Blood clots > 30-50%
- · Psychosocial care

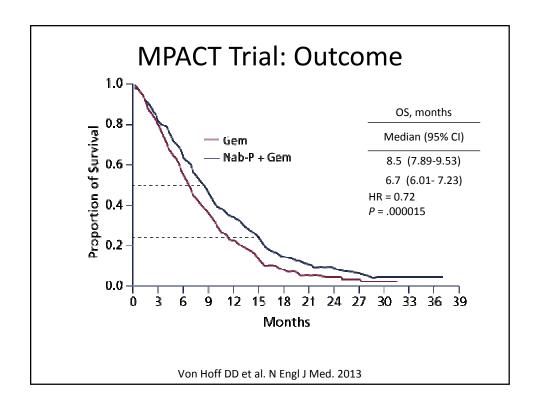


Goals of Treatment

- Control the cancer
- Ease symptoms
- Extend life
- Maintain/improve quality of life




FOLFIRINOX vs Gemcitabine Other Trial Endpoints


	FOLFIRINOX N= 167	Gemcitabine N= 169
Low white cells + fever	5 %	0.6%
Low platelets	9%	2%
Nerve effects	9%	-
Vomiting	14%	5%
Diarrhea	13%	1%
White cell booster needed	43% 5%	
Tumor Shrinkage	32%	9%
Cessation tumor growth	6.4 m	3.3 m

Conroy T, et al. NEJM, 2011

Gourgou-Bourgade S et al. J Clin Oncol, 2013

Which Treatment First For PC?

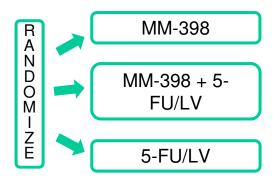
- No clear data to guide
 - Age, level of well-being, patient preference
- Nab-paclitaxel and gemcitabine applicable to broader patient population
 - Older, less robust
 - Easier to add other agents?
- Ability to select which regimen first will be useful

Second-Line Therapy in Pancreatic Adenocarcinoma

- No standard/ approved therapy for second line (yet...)
- Data to support gemcitabine-based treatment for patients with disease growth on 5-FU-based regimen
- Data to support 5-FU-based therapy for patients with disease growth on gemcitabine-based therapy
- Relatively few patients enrolled on trials in a second-line setting

Targeting Inflammation in PC RECAP Trial

- Randomized phase II capecitabine ± ruxolitinib
- N= 138 with progressive met PDAC following prior gemcitabine-based therapy
- · Primary endpoint: Survival
- Subgroup: 50% with elevated C-reactive protein (CRP)
 - Improvement in outcome with addition of ruxolitinib


ASCO, 2014

MM-398: New Chemotherapy

 Irinotecan – encapsulated for improved delivery/ efficacy (lipid nanoparticle)

Randomized Phase III Trial Previously Treated Pancreas Cancer

Previously Treated Pancreas Adenocarcinoma N= 417

Combination of MM-398 + 5-FU/LV – most beneficial Under FDA review – 2015?

Wang-Gillam. World GI Symposium, 2014.

Where Do We Go From Here?

- Interfering with the stroma
- Targeted therapy for genetic subgroups
- Targeting cancer stem cells
- Immune therapies
- Specific inhibitors of key signaling pathways
- New chemotherapy (cytotoxic) agents

Clinical Trials

- Phase I
 - Dosing, schedule, side effects, hints of efficacy
- Phase II
 - Typically restricted to a specific disease
 - Estimation of the effectiveness of the therapy
 - Fuller understanding of side effects
- Phase III
 - Comparison to best standard treatment
 - Gold standard approach for drug approval
- Phase IV
 - Post FDA drug approval assessment

Clinical Trials II

- Support for clinical trials
 - Government (NCI)
 - Pharmaceutical industry
 - Philanthropy,
 - Academic Institutions
- Regulatory control/ support for clinical trials
 - Institutional Review/ Privacy Board
 - Large trials Data & Safety monitoring committee
 - Principal investigator responsibility

Types of Clinical Trials

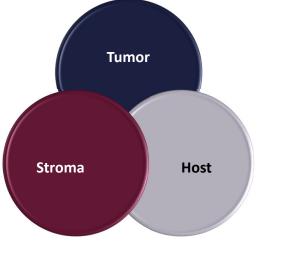
- Therapeutic
 - Treat the cancer
 - Treat the symptoms
- Non-therapeutic
 - Data collection
 - Investigate biology, outcomes in subgroups

Considering a Clinical Trial

- Things to think about...
 - Goal of study and your goals
 - State-of-the-art care
 - Better than state-of-the-art?
 - Advancing knowledge
- Appropriate for your setting?
 - Mostly for patients without prior treatment
 - Adequate general health (aside from cancer)

Pancreatic Cancer Trial Accrual 2011

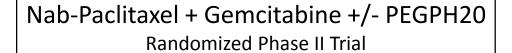
(Courtesy Pancreatic Cancer Action Network)

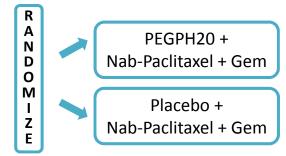

	TOTALS
Number patients participating in phase I-III pancreatic trials	1,794
Pancreatic Cancer Trial Participation	4.54%
Other Adult Cancers	~2%

Hoos WA, et al. J Clin Oncol. 2013;31(27):3432-3438

New Targets, New Drugs...

Target/ Frequency	Class of Drug	Example of Drug
RAS (90%), RAK, MEK	FT inhibitor; Oncolytic virus C-Met	Tipifarnib, Salarasib; Reovirus, Selumetinib, Onartuzumab
EGFR (40-70%)	TKI's, monoclonal Antibodies	Erlotinib
mTOR/ P13K/ AKT/ MEK	mTOR inhibitor AKT, P13K, MEK	Everolimus, temsirolimus MK-2206, XL-765, BKM-120, Selumetinib
Hedgehog (70%) Notch (60-70%)	Small molecule Shh inhibitor Gamma-secretase inhibitor	GDC-0449, IPI-926, LDE-225 R04929097, OMP-59R5
PSCA	Antibody to PSCA	AGS-1C4D4
SRC	SRC, bcr-abl inhibitor	Dasatinib, AZD 0530
PARP/BRCA/PALB2	PARP inhibitors	AZD 2281, Veliparib, BSI-201
Vaccines/Immune	CTLA4, PD-1, PD-L1, CD40 CAR mesothelin	Ipilumumab, Nivolumab, CRS-207, GVAX, Algenpantucel-L




Hyaluronan in the Stroma as a Target in Pancreatic Cancer

- Hyaluronan increased in >80% of pancreatic cancers
- Tumors that accumulate hyaluronan develop high pressure and drug resistance
- Hyaluronan is associated with disease progression and poor prognosis

1. Theocharis AD et al. *Biochim Biophys Acta*. 2000;1502:201-206. 2. Jacobitz MA et al. *Gut*. 2013;62:112-120. 3. Provenzano PP et al. *Cancer Cell*. 2012;21:418-429.

Untreated Metastatic Panc Adenocarcinoma N= 132

Primary Endpoint: Disease control

http://clinicaltrials.gov/show/NCT01839487

Pancreatic Cancer, BRCA, and PARP Inhibition

- 5%-10% of pancreatic cancer patients have inherited BRCA-1 or -2 gene mutation
 - Ashkenazi Jewish, Scandinavian, Icelandic, others
- BRCA-1, -2 involved in DNA repair
- PARP inhibition established value in ovarian/breast cancer with BRCA-related mutations
- Emerging data in pancreatic cancer supports targeting genetic vulnerabilities related to BRCA gene mutations

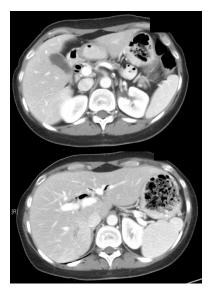
Randomized Phase II Trial in BRCA-Mutated Pancreas Adenoca

Pancreas cancer with BRCA1-2, PALB2 mutation

Arm A: Cisplatin + gemcitabine + veliparib

Arm B: Cisplatin + gemcitabine

Gemcitabine + cisplatin d3+10, q21


Veliparib dosing, day 1-12 twice daily by mouth

http://clinicaltrials.gov/show/NCT01585805. Accessed 2014

Pancreas Cancer BRCA Mutation

Ca 19-9 2660; CEA 229

Ca 19-9 42; CEA 4.3

Immunotherapy Trials in PC

- Algenpantucel-L (NewLink Genetics): human PC cell lines genetically engineered to express αGal
 - Completed study in surgically removed pancreas cancer
- Nivolumab (PD1) ± ipilimumab (anti-CTLA4)
- MEDI4736 (PDL1)
- Engineered T-cells (CAR)
 - Mesothelin, CEA
- Clivatuzumab mAb hPAM40 + ⁹⁰Y (radioimmunotherapy)

ECLIPSE Trial Randomized Phase IIB Cyclophosphamide Α + GVAX + CRS 207 Ν D **Previously Treated** 0 Metastatic Panc **CRS 207** Μ Adenocarcinoma N = 240Z Ε Chemotherapy* *Gemcitabine/ Capecitabine/ Erlotinib/ Irinotecan Primary Endpoint: Overall Survival NCT02004262

Front-Line Metastatic Trials Selected Randomized Phase II

NCT	Trial Design	N	Target	Sponsor
01839487	Gem + nab-paclitaxel ± PEGPH20	132	Hyaluronan	Halozyme
01621243	Gem + nab-paclitaxel ± M402	148	Anti-stromal	Momenta
01647828	Gem + nab-paclitaxel ± OMP-59R5	140	Notch, stem cell	OncoMed
01844817	Gem + nab-paclitaxel ± OGX-427	132	HSP27	OncoGenix
01016483	Gem ± MSC1936369B	174	MEK	Merck, EU
01728818	Gem ± afatinib	117	EGFR, HER2,4	Boehringer, EU
01509911	Gem ± TL-118	80	Angiogenesis	Tiltan Pharma
01505530	LY249555 + chemo (investig choice)	120	Myostatin	Eli-Lilly
01280058	Carbo + paclitaxel ± reovirus	70	RAS	NCI
01585805	Gem + cisplatin ± veliparib	~70	PARPi (BRCA+)	NCI, Lustgarten
01209111	Gem + erlotinib ± metformin	120	Multiple	U. Amsterdam
01167738	PEXG ± metformin	82	Stem cells	San Raffaele

Conclusions

- 1. Treament works in PC
- 2. Adjuvant therapy: Gemcitabine +/- chemoradiation
- 3. For high functioning individuals with metastatic disease Multi-drug combination, e.g.,

FOLFIRINOX, Gemcitabine + nab-paclitaxel

- 4. For all clinical trials where possible
- 5. Multiple interesting agents in development

Conclusions II

- Second-/third-line therapy trials feasible and area for drug development
- · Ongoing needs
 - Validated markers for patient treatment selection
 - Enhanced clinical trial participation
- Future looks brighter...

Expectations For The Future

- 1) Improved understanding of who is at risk
- 2) Increased role of screening for PC
- 3) Improved model systems of PC
- 4) Improvements in treatment
- 5) Improvements in molecular classification